Continuous Toolpath Planning in a Graphical Framework for Sparse Infill Additive Manufacturing

Prashant Gupta* Bala Krishnamoorthy* Gregory Dreifus**

*Washington State University **MIT

Sparse infill in 3D printing

Infill Region(Blue)

Sparse Infill mesh

Challenges

 Discontinuous extrusion [Kuipers et al., 2019]

Input

Order

Bulging

 Crossover of extrusion paths [Kuipers et al., 2019]

No Crossover

Crossover

Challenges

Q: Can we create a framework to print continuously without crossover?

- We can use **Euler mesh**, where each vertex is connected to even number of edges.
- But, **Euler mesh** for arbitrary domain with identical types of elements is challenging
 - NP-complete for triangulations with even parity (Aichholzer et al., 2014)
- Crossover avoidance in mesh is still open

Euler Mesh

Our Contributions

- Euler Transformation for any polygonal region with/out holes to generate Euler mesh
- Generalized Euler Transformation that allows combinatorial and topological changes
- Efficient continuous path planning framework for 3D printing using Euler Transformation.
 ✓ any geometry
 ✓ holes
- Algorithm for tool path with **no crossover**

Euler Transformation*

* G and Krishnamoorthy. Euler transformation of polyhedral complexes. 2018, arXiv:1812.02412

Properties of Euler Transformation (ET)

 $\mathrm{ET}(K)=\widehat{K}$

- Every vertex in \widehat{K} connected to 4 other vertices.
- $|\hat{V}| = 2|E|$, $|\hat{E}| = 4|E|$, $|\hat{F}| = |V| + |E| + |F|$ V,E,F: sets of vertices, edges, faces (polygons) in K
- Total Euclidean length of the edges in \hat{E} roughly doubles.
- Generalized ET with combinatorial and topological changes.

Combinatorial Change

Topological change

Input mesh

Printed Pyramid (Layers)

Preprint Pyramid

Patched Mesh

Clipped Mesh

ϵ -Continuous Layers

Support Perimeter

a) Patched Mesh

b) Support Perimeter (Blue)

Add regular perimeter around support perimeter to improve surface quality.

Example: Stanford Bunny

Algorithm for Toolpath with no crossover

Open Problems

- "Optimized" toolpath algorithm with no crossovers?
- Mechanical properties of infill lattice under ET?
- Continuous toolpath framework for surface mesh?
- Non-planar 3D printing?

Thank You!